2013/04/26

条件付き確率場の推論と学習

条件付き確率場の推論と学習 from Masaki Saito

 前回の研究室ゼミで話した,条件付き確率場についての簡単な紹介スライドを公開します.内容は基本的なPairwise CRFについての話と,それが実際にどのような問題に対して応用がなされているか,またもっとも使われる最適化手法の一つである,平均場近似と確率伝搬法についての簡単な解説と,CRFの初歩的な学習法といった流れです.

補足:
 CRFの学習は自然言語処理など他の分野でもよく使われている学習法なのでおそらく知っている方は多いと思うのですが,普通はダイレクトに対数尤度を最大化することでパラメータを求めています.しかし,今回はKL距離という確率分布間の近さを図る指標を用いて対数尤度を拡張し,パラメータを求めています.なぜわざわざそうするのかというと,だいたいの最適化手法がKL距離の最小化という議論に帰着できて,すっきりするからです.KL距離を使えば平均場近似,確率伝搬法,最尤推定,あと時間の都合上話せなかったTRWやGeneralized Belief Propagationなどの最適化手法がすべて統一的に理解できます.これによって覚えることが少なくなって楽できるだけでなく,このKL距離を使った新しい最適化手法を提案することもできます.

2013/04/25

近況報告

お久しぶりです.細々とした近況はTwitterに書いているのですが,あくまでTwitterはつぶやきであって,記事でない.定期的に自分の中でまとめた内容をブログに吐き出す必要がありますね.
  1. 修士論文を提出し,晴れて今年度から博士後期課程の1年生です.不安が全くないと言えば嘘になりますが,それでも毎日好きなことを学び,研究できる環境は非常に楽しい.みなさんもぜひ博士課程に進学しましょう.唯一不満に思うところは頻繁に書類を書く業務が入るあたりですが,仕方のないことです.
  2. 後できちんとした内容を書きますが,2013年のCVPR(コンピュータビジョンのトップカンファレンス)に採択されました.去年を含めると今回で2回目の採択ですが,前回と異なるのが,今回はポスターではなくオーラルセッションでの採択というところです.オーラルセッションは非常に狭き門(採択率 60/1870 = 3.2%)でありますので,そのような研究成果を得られたことは非常に嬉しいですし,来年もぜひ通しておきたいところです.
  3. 博士後期課程になりましたので,これからは本名メインで活動していきます.プロフィール画像も更新しました.前に使ってた画像は高校時代からのものでしたから,大体7年位使っていたんでしょうか.というかこのブログ,今年で7年目になるのですね.
  4. 自身の宣伝もかねて,論文やコードなどはこれから作る自己紹介のページにて積極的に公開していきます.論文についてはできるだけ読んでもらえるよう,簡単な解説も記事にしていきたいと思っております.